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ABSTRACT: Granular materials, can be simulated by the discrete element method (DEM). In DEM particles are considered 

rigid and the only flexibility present in the model is local and formulated for the contacting points. Such treatment might not be 

adequate when the general flexibility of particles needs to be considered in granular media.  In this contribution, we propose a 

method that introduces flexible particles of general polyhedral shape within the DEM context.  In detail, the virtual element 

method (VEM) is used for the spatial discretization of particles. It allows the discretization of such polyhedra using only one 

single element with polyhedral shape. Contact between polyhedral particles, which can be non-convex, is addressed by a special 

master-to-master contact technique. Furthermore, a barrier-based interface law enforces the contact constraints. Examples in-

clude studies of systems of flexible polyhedral particles employed to model a sand-material.  
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1 INTRODUCTION 

Computational modeling allows nowadays reliable pre-

dictions of engineering problems. With the aid of simu-

lation tools, it is possible to investigate complex systems 

composed of parts, joints, connections, and complex 

kinematics, aiming at simulating their mechanical be-

haviour. With virtual tests, under as tension, compres-

sion, and shear conditions, one can reduce the number 

of experiments. The representativity of such tests, how-

ever, depends deeply on the nature of the material be-

haviour related to the model.  

In this context, one can assume continuum mechanics 

as the basis for material modeling. This comprises a 

myriad of models, from the linear-elastic behavior 

(Hooke’s law), to equations that introduce more effects 

such as plasticity, viscoelasticity, damage, etc. An alter-

native methodology, particularly useful for modeling 

granular media, avoids the continuum mechanics as-

sumption and represents the motion of each grain of the 

material individually. This possibility is very challeng-

ing from the computational perspective, as the motion 

of each grain is based on six equations (translations and 

rotations) in the three-dimensional space if one assumes 

rigid particles. Therefore, many grains can lead to a 

large set of ordinary differential equations. This ap-

proach forms the basis of the Discrete Element Method 

(DEM), which proposes the solution for the motion of 

each grain, thus, representing a coupled multibody sys-

tem (see e.g.: (Poschel et al. 2005), (Cundall et al. 1979), 

(Luding, 2008)). A convenient geometrical representa-

tion for each grain shape is a sphere, but the real shape 

of granular material can better be described by polyhe-

dra. The latter is quite general, as one can describe con-

vex or concave grains, including details of the bounda-

ries.  

The main difficulty of DEM relates to the modelling 

of grain-grain interaction. For that, one can establish 

proper interface laws, that characterize the complexity 

of each local contact patch. As examples, one can for-

mulate a simple linear (spring-type) interface law or a 

Hertzian-like relation between normal force and grain-

grain approach (Johnson, 1987). DEM models, how-

ever, assume each grain as a rigid body. Therefore, flex-

ibility is usually only embedded in the interface law, 

representing very local effects. This can be an issue 

when the overall system flexibility is of interest. A rem-

edy for this limitation is a solid modelling for each grain. 

With that, each grain can be approximated using tech-

niques such as the finite element method (FEM). For 

complex grain shapes, the FEM discretization leads to 

grains with many elements and unknowns.  This turns 

out to be computationally demanding and leads to an 

overall DEM-FEM model that is even more complex 

and for practical applications impossible to be solved. 

The virtual element method (VEM) provides an alterna-

tive to FEM and has a more versatile option to complex 

element shapes, enabling to use just one element to de-

scribe a polyhedron. 

Polyhedral representation of grains is a possible 

choice when using DEM models, see e.g. [(Benjamin et 

al. 2013), (Bart et al. 2015), (Fei et al. 2018), (Gay Neto 
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et al. 2022)]. With such geometrical description, theo-

retically any grain shape, convex/concave, can be mod-

eled with a desired level of geometrical refinement. 

However, contact detection between general polyhedra 

is challenging and costly. Due to that, spheres are the 

most popular choice for particle shapes in DEM. When 

aiming at a more accurate representation of particle 

shapes, spheres are no longer acceptable and one needs 

another option, facing higher computational costs (such 

as polyhedra or sphere clusters). 

The polyhedral representation for each grain can be 

incorporated via VEM in a DEM code when the particle 

flexibility is of concern. Here we introduce a single ele-

ment per grain scheme, see Figure 1. This significantly 

simplifies the meshing process and proposes a simple, 

but powerful formulation to include a grain flexibility. 

It can be shown that even a single virtual element is ca-

pable to capture grain elasticity. This so called VEM-

DEM scheme was proposed in (Gay Neto et al., 2021). 

 
Figure 1. VEM-DEM scheme: a single grain is represented as 

a single flexible polyhedral element 

 

This paper illustrates the basic ideas of the VEM-

DEM scheme, and its usage for a numerical simulation 

of sand material. At this stage results are only for a 

limited amount of but next developments will result in a 

code that can be applied in engineering practice. 

 

2 BRIEF DESCRIPTION OF VEM-DEM 

SCHEME 

To formulate of the general motion of a grain we intro-

duce the total potential 𝑊  which is split onto an inter-

nal part, related to the strain energy 𝑊 𝑖 in the grain, 

and external part 𝑊 𝑒, related to the loading, and a part 

that contains the inertia terms, 𝑊 𝑑. 

 𝑾 = 𝑾𝒊 −𝑾𝒆 +𝑾𝒅. (1) 
 

The strain energy that is used in this contribution relates 

to a nonlinear Neo-Hookean hyperelastic model 𝜓 𝑖 

𝝍𝒊(𝑭) = 𝝁𝟐 (𝑱𝑭−𝟑𝟐𝒕𝒓(𝑭𝑻𝑭) − 𝟑) + 𝜿𝟒 (𝑱𝑭𝟐 − 𝟏 − 𝟐 𝐥𝐨𝐠(𝑱𝑭)). (2) 

 

which is a function of the deformation gradient F and 

its determinant 𝐽𝐹. The parameters 𝜅 and 𝜇 are the bulk 

and the shear modulus, respectively. The deformation 

gradient follows from 𝑭 = 𝟏 +  𝐺𝑟𝑎𝑑 𝒖. 

2.1 Virtual element method (VEM) 

The virtual element method is a generalization of the 

finite element method that allows for elements with 

arbitrary shape and polynomial order. Its basic 

principles were first published in (Beirão da Veiga et al. 

2013), a more practical introduction to the method can 

be found in (Beirão da Veiga et al. 2014).  Some 

examples regarding applications in solid mechanics can 

be found in (Hudobivnik et al. 2019), (Park et al. 2020), 

(Cihan et al. 2021), (Cihan et al. 2022). The method’s 
solution space contains non-polynomial functions in 

addition to a full polynomial subspace of the used 

polynomial order 𝑘. Within the method the field of 

displacements 𝒖(𝑿, 𝑡) is approximated only at the edges 

of each particle. 

A linear interpolation, degree 𝑘 = 1, is employed for 

simplicity and efficiency in this contribution. A more 

detailed explanation can be found in (Gay Neto et al., 

2021) for the method used in this work. 

2.1.1 VEM construction 

Let 𝒑𝐸 be the chosen degrees of freedom (DOF) for 

the element 𝐸. Let us further assume that 𝑛𝐸 elements 

descibe the system of particles. The potential 𝑊 is then 

described using the contribution of all 𝑛𝐸 elements, each 

element contribution is given by 𝑊𝐸(𝒑𝑬), which can be 

decomposed into internal 𝑊𝐸 𝑖(𝒑𝑬), external 𝑊𝐸 𝑒(𝒑𝑬) 
and inertial 𝑊𝐸 𝑑(𝒑𝑬) parts. 

The VEM ansatz for the displacements 𝒖ℎ is 

unknown within the element, it is only defined at the 

edges. It’s projection onto the polynomial subspace 𝒖𝛱 

can be constructed, leading to a split of the element’s 
contribution to the potential into two parts. The first part 

is a function of 𝒖𝛱, which alone yields rank deficient 

stiffness and mass matrices. It is called consistency part 𝑊𝐸𝑐𝑜𝑛. The second part relates to the stability term 𝑊𝐸𝑠𝑡𝑎, needed to restore the rank of the formulation. 

 𝐖𝐄(𝒑𝑬) = 𝑾𝑬𝒄𝒐𝒏(𝒖𝜫) +𝑾𝑬𝒔𝒕𝒂(𝒖𝒉 − 𝒖𝜫). (3) 
 

2.1.2 Virtual element ansatz and projection 

The polynomial projection of the ansatz functions is 

defined by the orthogonality conditons (4) and (5) which 
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have to be satisfied for all displacements 𝒖𝒑 ∈ (𝑃𝑘(Ω))3 

of the polynomial interpolation space with order k 

 ∫ [𝒖𝒑 ∙ (𝒖𝒉 − 𝒖𝜫)]𝒅𝛀𝛀 = 𝟎. (4) 

 ∫ [𝛁𝒖𝒑 ∙ (𝛁𝒖𝒉 − 𝛁𝒖𝜫)]𝒅𝛀𝛀 = 𝟎. (5) 

 

Condition (5) can be reformulated with the 

divergence theorem. This yields after some algebra the 

gradient of the projection as presented in (6). 

Furthermore, condition (4), for 𝑘 = 1, can be used to 

compute the constant part of 𝒖𝚷. The integral in (4) can 

be replaced by the nodal average of the displacements. 

The right side of expression in (6) can be computed 

using a triangulation of each of the faces 𝜕Ω𝑓 of the 

polyhedron with 𝜕Ω = ∑ 𝜕Ω𝑓𝑓 , requiring knowledge of 

the vertex displacements, i.e., 𝒖𝚷 = 𝒖𝚷(𝒑𝑬). 
 𝛁𝒖𝜫|𝛀| = ∫ 𝛁𝒖𝒉𝛀 𝒅𝛀 = ∫ 𝒖𝒉⊗𝑵𝝏𝛀 𝒅𝑨. (6) 

 

2.1.3 Consistency term 

The polynomial part of the element’s contribution to the 
problem’s potential 𝑊𝐸𝑐𝑜𝑛(𝒖𝜫) can easily be computed 

using quadrature schemes as only polynomials are used 

for the interpolation. 

2.1.4 Stabilization 

The consistency part alone yields a rank deficient 

stiffness and mass matrices, thus, a stabilization term is 

needed. 

In this work the sub-mesh approach is employed to 

stabilize the element, see (Hudobivnik et al. 2019). 

Here, an additional energy term is introduced, based on 

a tetrahedral sub-mesh of finite elements 𝑊𝐸(𝒖𝒉), valid 

for all components of the potential (𝑥 = 𝑖, 𝑒, 𝑑). In this 

case, 𝑊𝐸𝒙(𝒖𝜫) is the 𝑥 part of consistency term. 
 𝑾𝑬𝒙𝒔𝒕𝒂 = 𝜷𝒙𝑾𝑬𝒙(𝒖𝒉) − 𝜷𝒙𝑾𝑬𝒙(𝒖𝜫). (7) 
 

2.1.5 Full potential 

The full potential of an element 𝐸 can be expressed like 

(3), with each component being defined as  

 𝑾𝑬 𝒊(𝒑𝑬) = (𝟏 − 𝜷𝒊)𝑾𝑬 𝒊(𝒖𝚷) + 𝜷𝒊𝑾𝑬 𝒊(𝒖𝒉)    𝑾𝑬 𝒆(𝒑𝑬) = (𝟏 − 𝜷𝒆)𝑾𝑬 𝒆(𝒖𝚷) + 𝜷𝒆𝑾𝑬 𝒆(𝒖𝒉)𝑾𝑬 𝒅(𝒑𝑬) = (𝟏 − 𝜷𝒅)𝑾𝑬 𝒅(𝒖𝚷) + 𝜷𝒅𝑾𝑬 𝒅(𝒖𝒉) .

 (8) 

 
Each element’s contribution to the residual and 

tangent matrices can be computed as usual based on the 

potential just presented, see (Gay Neto et al., 2021). 

This virtual element formulation was applied to single 

virtual elements of different shape. For a compressive 

loading the force versus strain curves were compared 

with refined finite element discretizations of the same 

particle, see (Gay Neto et al., 2021). Remarkedly, the 

single VEM element performed well for situations up to 

20 % strain besides having only constant stress states 

inside due to the linear interpolation.  

 

2.2 Master-to-master contact method 

Pointwise contact interactions between general surfaces 

can be established by a master-to-master contact 

scheme, see (Gay Neto et al. 2016). In this approach, 

two surfaces ΓA(𝜁𝐴, 𝜃𝐴) and Γ𝐵(𝜁𝐵, 𝜃𝐵) are defined in 

terms of convective coordinates. These define a vector 

gap  

 𝐠 = 𝚪𝑨(𝜻𝑨, 𝜽𝑨) − 𝚪𝑩(𝜻𝑩, 𝜽𝑩). (9) 
 

The magnitude ‖𝐠‖ is a distance measure. The direc-

tion of 𝐠 can be used to define the contact “normal” 

 𝐧 = 𝐠‖𝐠‖. (10) 

 

The gap can be evaluated by picking arbitrary mate-

rial points in both surfaces. Then, one needs to establish 

a methodology to determine the contact pairs. This is 

done by the so-called Local Contact Problem (LCP), 

leading to the orthogonality relations 

 

{  
  +𝚪𝑨,𝜻𝑨 ⋅ 𝐠+𝚪𝑨,𝜽𝑨 ⋅ 𝐠−𝚪𝑩,𝜻𝑩 ⋅ 𝐠−𝚪𝑩,𝜽𝑩 ⋅ 𝐠 = [

𝟎𝟎𝟎𝟎]. (11) 

 

The solution of this nonlinear set of equations leads 

to parameters associated with the positions of material 

points [𝜁𝐴̅ 𝜃̅𝐴 𝜁𝐵̅ 𝜃̅𝐵 ] where contact takes place. 

All ingredients used in this method are geometrical. Due 

to that, one can adapt the original definition of a LCP 

which degenerates the contacting surfaces into curves or 

points. By adapting the LCP definition, the contact in-

teraction of edge-to-edge, vertex-to-face, vertex-to-

edge, or vertex-to-vertex can be found, see (Gay Neto et 

al. 2019). This leads to the proposal in (Gay Neto et al. 

2021) to address general contact between polyhedra, 

where all combinations of such contact possibilities are 

considered. 
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3 SIMULATIONS AND RESULTS 

Numerical simulations are presented to show that the 

proposed technique can be used to address granular 

media. We construct a sand-like granular material pack 

specimen by filling it into a box with rigid walls. It is 

formed by employing 515 polyhedral particles (with 

size approx. 1.45 mm), which are inserted inside a box 

of dimensions 8 mm x 8 mm. The pack has a height of 

approx. 6 mm, see Figure 2. The Young modulus is E = 

90 GPa, the Poisson ratio is 𝜈 = 0.16 and the specific 

mass is 2,200 kg/m3. Note that the bulk and the shear 

modulus can be easily obtained form Young`s modulus 

and Poisson ratio. 

 

 

  
Figure 2. Sand-like granular material pack (initial 

configuration)  

 

The granular material is released by taking away the 

vertical walls. Then for three different friction 

coefficients we observe in Fig.3, Fig. 4 and Fig. 5 the 

final configuration of the sand pile. Clearly the slope 

angle reduces for smaller friction coefficients. 
 

 
Figure 3. Sand-like granular material pack dismounting sim-

ulation – static friction 0.9, dynamic friction 0.8 

 
 Figure 4. Sand-like granular material pack dismounting sim-

ulation – static friction 0.6, dynamic friction 0.5 

 
 Figure 5. Sand-like granular material pack dismounting sim-

ulation – static friction 0.3, dynamic friction 0.2 

 

The next simulation is related to a compression test 

where granular material in a box, see Fig. 6,   is 

compressed by a certain vertical pressure. The same 

material parameters as in the first example are used. 

Only the friction coefficient is changed, see Fig. 6. 

 
 Figure 6. Sand-like granular material pack (compressed con-

figuration) – static friction 0.15, dynamic friction 0.15 

 

The pack is compressed by a "lid" surface, located 

above the pack. The vertical motion of the lid ranges 

from  7 mm to  4,9 mm within the loading and unloading 

phase. This loading yields the response curve depicted 

in Fig. 7 where the difference between loading and 

unloading curve shows the internal friction within the 

compressed granular material. 

 
 

Figure 7. Sand-like granular material pack. Compression 

force vs. compressive strain for loading and unloading phases 

of the simulation 

 

4 CONCLUSIONS 

A novel methodology was developed to simulate sys-

tems composed of flexible polyhedral particles that can 

undergo multiple contact interactions. These particles 

were modeled using the virtual element method which 

allows to discretize polyhedral grains with single ele-

ments. In the numerical simulations it was shown that 

the constitutive behaviour of stiff particle assemblies 

under compression could be captured, including the 

hysteresis curve. 
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