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ABSTRACT: Granular materials, can be simulated by the discrete element method (DEM). In DEM particles are considered
rigid and the only flexibility present in the model is local and formulated for the contacting points. Such treatment might not be
adequate when the general flexibility of particles needs to be considered in granular media. In this contribution, we propose a
method that introduces flexible particles of general polyhedral shape within the DEM context. In detail, the virtual element
method (VEM) is used for the spatial discretization of particles. It allows the discretization of such polyhedra using only one
single element with polyhedral shape. Contact between polyhedral particles, which can be non-convex, is addressed by a special
master-to-master contact technique. Furthermore, a barrier-based interface law enforces the contact constraints. Examples in-

clude studies of systems of flexible polyhedral particles employed to model a sand-material.
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1 INTRODUCTION

Computational modeling allows nowadays reliable pre-
dictions of engineering problems. With the aid of simu-
lation tools, it is possible to investigate complex systems
composed of parts, joints, connections, and complex
kinematics, aiming at simulating their mechanical be-
haviour. With virtual tests, under as tension, compres-
sion, and shear conditions, one can reduce the number
of experiments. The representativity of such tests, how-
ever, depends deeply on the nature of the material be-
haviour related to the model.

In this context, one can assume continuum mechanics
as the basis for material modeling. This comprises a
myriad of models, from the linear-elastic behavior
(Hooke’s law), to equations that introduce more effects
such as plasticity, viscoelasticity, damage, etc. An alter-
native methodology, particularly useful for modeling
granular media, avoids the continuum mechanics as-
sumption and represents the motion of each grain of the
material individually. This possibility is very challeng-
ing from the computational perspective, as the motion
of each grain is based on six equations (translations and
rotations) in the three-dimensional space if one assumes
rigid particles. Therefore, many grains can lead to a
large set of ordinary differential equations. This ap-
proach forms the basis of the Discrete Element Method
(DEM), which proposes the solution for the motion of
each grain, thus, representing a coupled multibody sys-
tem (see e.g.: (Poschel et al. 2005), (Cundall et al. 1979),
(Luding, 2008)). A convenient geometrical representa-
tion for each grain shape is a sphere, but the real shape

of granular material can better be described by polyhe-
dra. The latter is quite general, as one can describe con-
vex or concave grains, including details of the bounda-
ries.

The main difficulty of DEM relates to the modelling
of grain-grain interaction. For that, one can establish
proper interface laws, that characterize the complexity
of each local contact patch. As examples, one can for-
mulate a simple linear (spring-type) interface law or a
Hertzian-like relation between normal force and grain-
grain approach (Johnson, 1987). DEM models, how-
ever, assume each grain as a rigid body. Therefore, flex-
ibility is usually only embedded in the interface law,
representing very local effects. This can be an issue
when the overall system flexibility is of interest. A rem-
edy for this limitation is a solid modelling for each grain.
With that, each grain can be approximated using tech-
niques such as the finite element method (FEM). For
complex grain shapes, the FEM discretization leads to
grains with many elements and unknowns. This turns
out to be computationally demanding and leads to an
overall DEM-FEM model that is even more complex
and for practical applications impossible to be solved.
The virtual element method (VEM) provides an alterna-
tive to FEM and has a more versatile option to complex
element shapes, enabling to use just one element to de-
scribe a polyhedron.

Polyhedral representation of grains is a possible
choice when using DEM models, see e.g. [(Benjamin et
al. 2013), (Bart et al. 2015), (Fei et al. 2018), (Gay Neto
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et al. 2022)]. With such geometrical description, theo-
retically any grain shape, convex/concave, can be mod-
eled with a desired level of geometrical refinement.
However, contact detection between general polyhedra
is challenging and costly. Due to that, spheres are the
most popular choice for particle shapes in DEM. When
aiming at a more accurate representation of particle
shapes, spheres are no longer acceptable and one needs
another option, facing higher computational costs (such
as polyhedra or sphere clusters).

The polyhedral representation for each grain can be
incorporated via VEM in a DEM code when the particle
flexibility is of concern. Here we introduce a single ele-
ment per grain scheme, see Figure 1. This significantly
simplifies the meshing process and proposes a simple,
but powerful formulation to include a grain flexibility.
It can be shown that even a single virtual element is ca-
pable to capture grain elasticity. This so called VEM-
DEM scheme was proposed in (Gay Neto et al., 2021).

Figure 1. VEM-DEM scheme: a single grain is represented as
a single flexible polyhedral element

This paper illustrates the basic ideas of the VEM-
DEM scheme, and its usage for a numerical simulation
of sand material. At this stage results are only for a
limited amount of but next developments will result in a
code that can be applied in engineering practice.

2 BRIEF DESCRIPTION OF VEM-DEM
SCHEME

To formulate of the general motion of a grain we intro-
duce the total potential W which is split onto an inter-
nal part, related to the strain energy W; in the grain,
and external part W, related to the loading, and a part
that contains the inertia terms, W ;.

W=Ww,—W,+W,. (1)

The strain energy that is used in this contribution relates
to a nonlinear Neo-Hookean hyperelastic model y ;

nl -2
Pi(F) = §<1F2tr(FTF) - 3)
+2(JF —1-21ogUp). )

which is a function of the deformation gradient ¥ and
its determinant /. The parameters x and u are the bulk
and the shear modulus, respectively. The deformation
gradient follows from F = 1 + Grad u.

2.1 Virtual element method (VEM)

The virtual element method is a generalization of the
finite element method that allows for elements with
arbitrary shape and polynomial order. Its basic
principles were first published in (Beirdo da Veiga et al.
2013), a more practical introduction to the method can
be found in (Beirdo da Veiga et al. 2014). Some
examples regarding applications in solid mechanics can
be found in (Hudobivnik et al. 2019), (Park et al. 2020),
(Cihan et al. 2021), (Cihan et al. 2022). The method’s
solution space contains non-polynomial functions in
addition to a full polynomial subspace of the used
polynomial order k. Within the method the field of
displacements u(X, t) is approximated only at the edges
of each particle.

A linear interpolation, degree k = 1, is employed for
simplicity and efficiency in this contribution. A more
detailed explanation can be found in (Gay Neto et al.,
2021) for the method used in this work.

2.1.1

Let pg be the chosen degrees of freedom (DOF) for
the element E. Let us further assume that ng elements
descibe the system of particles. The potential W is then
described using the contribution of all ng elements, each
element contribution is given by W (pg), which can be
decomposed into internal Wy ;(pg), external Wx .(PE)
and inertial Wy 4 (pg) parts.

The VEM ansatz for the displacements wu, is
unknown within the element, it is only defined at the
edges. It’s projection onto the polynomial subspace uy
can be constructed, leading to a split of the element’s
contribution to the potential into two parts. The first part
is a function of uy, which alone yields rank deficient
stiffness and mass matrices. It is called consistency part
WE™. The second part relates to the stability term
Wzt®, needed to restore the rank of the formulation.

VEM construction

W (pp) = W™ (up) + Wi (up — up).(3)

2.1.2  Virtual element ansatz and projection

The polynomial projection of the ansatz functions is
defined by the orthogonality conditons (4) and (5) which
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have to be satisfied for all displacements u,, € (P (Q))3
of the polynomial interpolation space with order &

fg[up - (up — un)]dﬂ = 0. (4)
Jo[Vup - (Vuy, — Vug)]de = o. (5)

Condition (5) can be reformulated with the
divergence theorem. This yields after some algebra the
gradient of the projection as presented in (6).
Furthermore, condition (4), for k = 1, can be used to
compute the constant part of up. The integral in (4) can
be replaced by the nodal average of the displacements.
The right side of expression in (6) can be computed
using a triangulation of each of the faces d€) of the

polyhedron with 0Q = ¥ ¢ 9, requiring knowledge of
the vertex displacements, i.e., Uy = ug(pg).

Vu,|Q| = [, Vu, dQ = [, u, ® N dA.(6)

2.1.3  Consistency term

The polynomial part of the element’s contribution to the
problem’s potential WE°™ (up) can easily be computed
using quadrature schemes as only polynomials are used
for the interpolation.

2.1.4 Stabilization

The consistency part alone yields a rank deficient
stiffness and mass matrices, thus, a stabilization term is
needed.

In this work the sub-mesh approach is employed to
stabilize the element, see (Hudobivnik et al. 2019).
Here, an additional energy term is introduced, based on
a tetrahedral sub-mesh of finite elements Wy (uy,), valid
for all components of the potential (x = i,e,d). In this
case, Wg,(uy) is the x part of consistency term.

Wﬁ\ca = BxWex(up) — B:We(up). 7

2.1.5 Full potential

The full potential of an element E can be expressed like
(3), with each component being defined as

Wegi(pg) = (A — BWgi(up) + BiWg i (up)

Wg e(pE) = (1 - Be)WE e(ul'l) + ﬁeWE e(uh)-

Wgae) = (1 — B)Wga(up) + 3dWE(d§uh)
8

Each element’s contribution to the residual and
tangent matrices can be computed as usual based on the
potential just presented, see (Gay Neto et al., 2021).

This virtual element formulation was applied to single
virtual elements of different shape. For a compressive
loading the force versus strain curves were compared
with refined finite element discretizations of the same
particle, see (Gay Neto et al., 2021). Remarkedly, the
single VEM element performed well for situations up to
20 % strain besides having only constant stress states
inside due to the linear interpolation.

2.2  Master-to-master contact method

Pointwise contact interactions between general surfaces
can be established by a master-to-master contact
scheme, see (Gay Neto et al. 2016). In this approach,
two surfaces I'y({4,0,) and I'z({p, 05) are defined in
terms of convective coordinates. These define a vector

gap

g =T4(34,0,4) —T({p, 0p). €))

The magnitude ||g|| is a distance measure. The direc-
tion of g can be used to define the contact “normal”

= ”ig” (10)

The gap can be evaluated by picking arbitrary mate-
rial points in both surfaces. Then, one needs to establish
a methodology to determine the contact pairs. This is
done by the so-called Local Contact Problem (LCP),
leading to the orthogonality relations

+FA:(A *
+FA.0A .
_FB,(B .

= = )

]. (11)

ga @ 09 09
I
e

_FB,GB .

The solution of this nonlinear set of equations leads
to parameters associated with the positions of material
points [{, 6, (g Og] where contact takes place.
All ingredients used in this method are geometrical. Due
to that, one can adapt the original definition of a LCP
which degenerates the contacting surfaces into curves or
points. By adapting the LCP definition, the contact in-
teraction of edge-to-edge, vertex-to-face, vertex-to-
edge, or vertex-to-vertex can be found, see (Gay Neto et
al. 2019). This leads to the proposal in (Gay Neto et al.
2021) to address general contact between polyhedra,
where all combinations of such contact possibilities are
considered.
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3 SIMULATIONS AND RESULTS

Numerical simulations are presented to show that the
proposed technique can be used to address granular
media. We construct a sand-like granular material pack
specimen by filling it into a box with rigid walls. It is
formed by employing 515 polyhedral particles (with
size approx. 1.45 mm), which are inserted inside a box
of dimensions 8 mm x 8 mm. The pack has a height of
approx. 6 mm, see Figure 2. The Young modulus is E =
90 GPa, the Poisson ratio is v =0.16 and the specific
mass is 2,200 kg/m>. Note that the bulk and the shear
modulus can be easily obtained form Young's modulus
and Poisson ratio.

G
a, ™y

Figure 2. Sand-like granular material pack (initial
configuration)

The granular material is released by taking away the
vertical walls. Then for three different friction
coefficients we observe in Fig.3, Fig. 4 and Fig. 5 the
final configuration of the sand pile. Clearly the slope
angle reduces for smaller friction coefficients.

Figure 3. Sand-like granular material pack dismounting sim-
ulation — static friction 0.9, dynamic friction 0.8

Figure 4. Sand-like granular material pack dismounting sim-
ulation — static friction 0.6, dynamic friction 0.5

Figure 5. Sand-like granular material pack dismounting sim-
ulation — static friction 0.3, dynamic friction 0.2

The next simulation is related to a compression test
where granular material in a box, see Fig. 6, i
compressed by a certain vertical pressure. The same
material parameters as in the first example are used.
Only the friction coefficient is changed, see Fig. 6.

Figure 6. Sand-like granular material pack (compressed con-
figuration) — static friction 0.15, dynamic friction 0.15

The pack is compressed by a "lid" surface, located
above the pack. The vertical motion of the lid ranges
from 7 mm to 4,9 mm within the loading and unloading
phase. This loading yields the response curve depicted
in Fig. 7 where the difference between loading and
unloading curve shows the internal friction within the
compressed granular material.

Comp. force [N]

— Loading

— Unloading

—
ON DO OO

C . strain (%
0 z 10 15 20 omp. strain (%)

Figure 7. Sand-like granular material pack. Compression
force vs. compressive strain for loading and unloading phases
of the simulation

4 CONCLUSIONS

A novel methodology was developed to simulate sys-
tems composed of flexible polyhedral particles that can
undergo multiple contact interactions. These particles
were modeled using the virtual element method which
allows to discretize polyhedral grains with single ele-
ments. In the numerical simulations it was shown that
the constitutive behaviour of stiff particle assemblies
under compression could be captured, including the
hysteresis curve.
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